IIDEC

INSTRUCTION SHEET (ORIGINAL) TOV
$\phi 30$ Emergency Stop Switch XN Series

Padlock Emergency Stop Switch

XN4E Series

Thank you for selecting IDEC product. Please confirm that the delivered product is what you have ordered.

\ SAFETY NOTE

Read this instruction sheet and the catalog for the XN4E series emergency stop switches to make sure of correct operation before starting installation, wiring, operation, maintenance, and inspection. Make sure that the instruction
sheet is kept by the end user. sheet is kept by the end user. XX4E before starting installation, wiring,
Turn off the power to the XNE maintenance and inspection of the XN4E. Failure to turn power off may cause electric shock or fire hazard.
Use wires of a proper size to meet voltage and current requirements. Tighten
the M3 terminal screws to a tightening torque of 0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$. Improper he M3 terminal screws to a tightening torque of 0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$. Improper
wires and loose terminals during operation will cause overheating and fire hazard. Provide a proper protection against electric shocks.
1 Type No. Development

2 Removing/Installing Contact Block and Panel Mounting

 $\underset{\text { First uniloc }}{\square}$ First unlock the operator button.Squeeze the latch lever on the yellow Squeeze the latch lever on the yellow
bayonet ring (1) and pull back the bayonet ring with force until the latch pin clicks (2), then turn the contact
block counter-clockwise and pull block counter-clockwise and pull out (3).
Notes for removing the contact block 1) With the button in the locked position, do not remove the contact block, otherwise
 the switch may be damaged.
2) When the contact block is removed, the monitor contact (NO contact) is closed. 3) While removing the contact block, do not exert an excessive force, otherwise
the switch may be damaged. 4) An switch may be damaged.

When removing the contact block, pull out the contact block straight to prevent damage to the LED lamp. If an excessive force is exerted, the LED
lamp may be damaged and fail to light.

Panel Mounting
Remove the locking ring from the operator and check that the rubber gasket is in place. Align
the anti-rotation projection on the bezel with the recess in the panel, insert the operator from panel front into the panel hole.
and tighten the locking ring using ring wrench
XNYZ-T1 or TWST-T1 to a toraue of $2.5 \mathrm{~N} \cdot \mathrm{~m}$. XNSZ-T1 or TWST-T1 to a torque of $2.5 \mathrm{~N} \cdot \mathrm{~m}$. When using the emergency stop nameplate Before installing the emergency stop
nameplate (Type No. HNAV-*) break the nameplate (Type No.: HNAV-*), break projection
IInstalling
First unlock
First unlock the operator button. Align the
small $\boldsymbol{\nabla}$ marking on the edge of the operator sleeve with the small \triangle marking on the yellow bayonet ring. Hold the contact block, not the bayonet ring. Press the contact block onto the operator and
turn the contact block clockwise until the lurn the contact bl
Notes for installing the contact block 1) With the button in the locked position, do not install the contact block, otherwise the switch may be damaged

, locked position.

3 Installing and Removing the Terminal Cover

To install Cover XW9Z-VL2M

To instan the terminal cover, align the the TOP marking on the contact block.
Place the ther Place the two projections on the bottom
side of the side of the contact block into the slots in
the terminal the terminal cover. Press the termina
cover toward the contact block To remove the terminal cover the two latches on the top side of the terminal cover. Do not exert an
excessive force to the latches, otherwise the lathes may break. Finger-safe Terminal Cover XW9Z-VL2MF To install the terminal cover, align the TOP marking on the terminal cover with the TOP marking on the contact block,
and press the terminal cover toward the and press the
contact block.
Notes for using the XW9Z-VL2MF
Once installed, the XW9Z-L2MF cannot
be removed.
2) With the XW9Z-VL2MF installed, crimping terminals cannot be used. Use solid wires.
3) Install the XW9Z-VL 2MF before wiing) Install the XW9Z-VL2MF before wiring.

achieved when installed loosely, and electric shocks may occur.

4 Notes for Operation

When using the emergency stop switch for safety-related equipment in a control system, refer to the safety standards and regulations in each country and region
depending on the depending on the application purpose of the actual machines and installations to
make sure of correct operation. Before using the emergency stop switc risk assessment to make sure of safety.
-Wiring
Tighten the terminal screws to a torque of 0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$.
Contact Chatter/Bounce
When the button is reset by pulling or turning, the NC main contacts will chatter. When pressing the button, the NO monitor contacts will chatter. When designing
a conctrol circuit, take the contact chatter time into consideration (reference value: 20 ms . Do not expose the switch to external shocks, otherwise the Contacts will bounce.
The LED lamp is built into the contact block and cannot be replaced.
\square Handlling
Do not operate the switch using a tool. Do not expose the switch to excessive shocks and vibrations, otherwise the switch may be deformed or damaged,
causing malfunction or operation failure. Padlock Emergency Stop
The padlockable emergency stop switches can be reset by turning only, and cannot be pulled to reset. Do not attempt to pull to reset, otherwise damage or

5 Contact Ratings [Main Contact (NC:black) and Monitor Contact (NO:blue)] | Rated Insulation Voltage(Ui) | 250V |
| :--- | :--- |
| Conventional Free Air Thermal Current (Ith) | 5 A |

Rated Operational Voltage (Ue)				30 V	125 V	250 V
		$\begin{gathered} \text { AC } \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	Resistive Load (AC-12)		5A	3A
			Inductive Load (AC-15)		3A	1.5
		DC	Resistive Load (DC-12)	2A	0.4 A	0.2 A
			Inductive Load (DC-13)	1A	0.22	0.1A
		AC	Resistive Load (AC-12)		1.2 A	0.6
		50/60Hz	Inductive Load (AC-14)		0.6 A	0.3 A
			Resistive Load (DC-12)	2A	0.4A	0.2
		DC	Inductive Load (DC-13)	1A	0.22	

6 Built-in LED Ratings

Rated Voltage	Operating Voltage	Operating Current
24 V AC/DC	24 V AC/DC $\pm 10 \%$	15 mA

7 Specifications

Applicable Standard	UL508, UL991, NFPA79 CSA C22.2 No.14, GB14048.5
Standard Operating Conditions	Operating temperature Non illuminated : -25 to $+60^{\circ} \mathrm{C}$ (no freezing) LED illuminated : -25 to $+55^{\circ} \mathrm{C}$ (no freezing) Relative humidity : 45 to $85 \% \mathrm{RH}$ (no condensation) Storage temperature : -45 to $+80^{\circ} \mathrm{C}$ (no freezing)
Minimum Direct Opening Force	80 N
Minimum Direct Opening Travel	4.0 mm
Maximum Travel	4.5 mm
Contact Resistance	$50 \mathrm{~m} \Omega$ maximum (initial value)
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500 V DC megger)
Overvoltage Category	II
Impulse Withstand Voltage	2.5 kV
Pollution Degree	3
Operating Frequency	900 operations/hour
Mechanical Life	250,000 operations minimum
Electrical Life	100,000 operations minimum 250,000 operations minimum (24 V AC/DC, 100 mA)
Shock Resistance	$\begin{array}{lr}\text { Operating extremes : } 150 \mathrm{~m} / \mathrm{s}^{2} \\ \text { Damage limits } & : 1,000 \mathrm{~m} / \mathrm{s}^{2} \\ \text { D }\end{array}$
Vibration Resistance	Operating extremes : 10 to 500 Hz , amplitude 0.35 Dm, acceleration $50 \mathrm{~m} / \mathrm{s}^{2}$ Damage limits 10 to 500 Hz , amplitude 0.35 mm, acceleration $50 \mathrm{~m} / \mathrm{s}^{2}$
Degree of Protection	IP65 (panel front:IEC 60529)
Terminal Protection	IP20 (Screw Terminal type when installing XW9Z-VL2MF)
Shor-c-ircuit Protective Device	250V/10A fuse (Type aM IEC60269-1/IEC60269-2)
Conditional Shortcircuit Current	1,000 A
Recommended Tightening Torque	0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (Screw Terminal type)
Recommended Tightening Torque of Locking Ring	$2.5 \mathrm{~N} \cdot \mathrm{~m}$
Applicable Wire	0.75 to $1.25 \mathrm{~mm}^{2}$ (AWG18 to 16)
Total Weight of Padlock and Hasp (Padlock type only)	1500 g maximum
Reinforced Insulation (IEC60664-1)	Between live parts and Bezel

8 Terminal Arrangement (Bottom View)

Screw Terminal Type

XNDE-BV, XN4E-BL (Non-Illuminated)

$\begin{array}{ll}\text { 1NC: Terminals on } R & \text { 1NC: Terminals on TOP } \\ \text { 2NC } \\ \text { 3NC: Terminals on } R \text { and } L \\ \text { 3NC: } \\ \text { 2NC: Terminals on } R \text { and } L\end{array}$

XNDE-LV, XN4E-LL (Illuminated)

$$
\begin{aligned}
& \text { Rand L } 2 \\
& \text { nd } \\
& \text { nd }
\end{aligned}
$$

2NC: Terminals on R and L
LNC : Terminals on R, L , and TOP
XNDE-TV, XN4E-TL (Illuminated Push ON)

9 Applicable Wire (Screw terminal type)

Note:The operator part has an anti-rotation projection.
Prepare the panel cut-out to the size shown in the figure.

12 Padlock and Hasp

shown below.

Padlock size	b	c	d				
7 am maximum	b				7 mm maximum	19 mm minimum	39 mm minimum 15 mm minimum ${ }^{* 2)}$
:---	:---	:---					
*2) Dimension d is 6 mm or more when attaching a padlock from the side of a			switch.				

Recommended Hasp
Manufacturer Type Shinwa SHH002 PANDUIT PSLL-HD3 PL--A
Master Lock
:---:
421

Since various from and sizes are available, make sure of applicability using the actual padlock and hasp before use. The total witght of the paclock and hasp can be a maximum of 1500 g . When the
total wight exceeds this limit, the switch may malfunction or fail.

IDEC CORPORATION

