Slim Power Relays

RJ ${ }_{\text {Series }}$

Compact and rugged power relays. Large switching capacity.

Plug-in terminal relays ideal for various applications such as control panels and machine tools.

- See website for details on approvals and standards.
- Lloyd Register type approved.

Large Switching Capacity

Highly conductive materials ensure stable electric conduction of current.

Large Switching Capacity (maximum allowable switching current)

Note: According to published specifications in other manufacturers' catalogs.

Excellent Durability

Our unique return spring structure provides improved durability and reliability of all mechanical parts.

High Visibility LED Indicator

IDEC's Unique Light Guide Structure.
An RJ relay can be easily identified with the illuminating LED.

Wide variety of models
Diode, reverse polarity diode, and RC circuits are available. Wide variety of $A C / D C$ coil voltages.

RJ Series Slim Power Relays

Plug-in Terminal

Shape	1-pole: With forward polarity diode (with LED indicator)		2-pole: Standard (with LED Indicator)	
Style	1-pole (SPDT)		2-pole (DPDT)	
	Part No.	Code: \square	Part No.	Code: \square
Standard (with LED Indicator)	RJ1S-CL- \square	A12, A24, A100, A110	RJ2S-CL- \square	A12, A24, A100, A110
		A200, A220		A200, A220
		D5, D6, D12, D24, D48		D5, D6, D12, D24, D48
		D100		D100
Simple (without LED Indicator)	RJ1S-C- \square	A12, A24, A100, A110	RJ2S-C- \square	A12, A24, A100, A110
		A200, A220		A200, A220
		D5, D6, D12, D24, D48		D5, D6, D12, D24, D48
		D100		D100
With forward polarity diode (with LED indicator)	RJ1S-CLD- \square	D5, D6, D12, D24, D48	RJ2S-CLD- \square	D5, D6, D12, D24, D48
		D100		D100
With forward polarity diode (without LED indicator)	RJ1S-CD- \square	D5, D6, D12, D24, D48	RJ2S-CD- \square	D5, D6, D12, D24, D48
		D100		D100
With reverse polarity diode (with LED indicator)	RJ1S-CLD1- \square	D5, D6, D12, D24, D48	RJ2S-CLD1- \square	D5, D6, D12, D24, D48
		D100		D100
With reverse polarity diode (without LED indicator)	RJ1S-CD1- \square	D5, D6, D12, D24, D48	RJ2S-CD1- \square	D5, D6, D12, D24, D48
		D100		D100
With RC(with LED indicator)	RJ1S-CLR- \square	A12, A24, A100, A110	RJ2S-CLR- \square	A12, A24, A100, A110
		A200, A220		A200, A220
With RC (without LED indicator)	RJ1S-CR- \square	A12, A24, A100, A110	RJ2S-CR- \square	A12, A24, A100, A110
		A200, A220		A200, A220

- Other coil voltages available (A115, A120, A230, A240)

Coil Voltage Code *

Code	Rated Coil Voltage
A12	12 V AC
A24	24 V AC
A100	$100-(110)$ V AC
A110	110 V AC
A115	115 V AC
A120	120 V AC
A200	$200-(220)$ V AC
A220	220 V AC
A230	230 V AC
A240	240 V AC
D5	5 V DC
D6	6 V DC
D12	12 V DC
D24	24 V DC
D48	48 V DC
D100	$100-110 \mathrm{~V}$ DC

Note: Specify a coil voltage code in place of \square in the Part No.

Contact Ratings

No. of Poles	Contact	Allowable Contact Power		Rated Load			Allowable Switching Current	Allowable Switching Voltage	Minimum Applicable Load (Note)
		Resistive Load	Inductive Load	Voltage	Resistive Load	Inductive Load $\begin{aligned} & \cos \emptyset=0.3 \\ & \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms} \end{aligned}$			
1	NO	3000VA AC 360W DC	$\begin{aligned} & \text { 1875VA AC } \\ & \text { 180W DC } \end{aligned}$	250 V AC	12A	7.5A	12A	$\begin{aligned} & 250 \mathrm{~V} \text { AC } \\ & 125 \mathrm{~V} \text { DC } \end{aligned}$	5V DC, 100 mA (reference value)
				30V DC	12A	6A			
	NC	3000VA AC 180W DC	1875VA AC 90W DC	250 V AC	12A	7.5A			
				30V DC	6A	3A			
2	NO	$\begin{aligned} & \text { 2000VA AC } \\ & 240 W \text { DC } \end{aligned}$	$\begin{aligned} & \text { 1000VA AC } \\ & \text { 120W DC } \end{aligned}$	250 V AC	8A	4A	8A	$\begin{aligned} & 250 \mathrm{~V} \mathrm{AC} \\ & 125 \mathrm{~V} \text { DC } \end{aligned}$	5V DC, 10 mA (reference value)
				30V DC	8A	4A			
	NC	$\begin{aligned} & \text { 2000VA AC } \\ & \text { 120W DC } \end{aligned}$	1000VA AC60W DC	250 V AC	8A	4A			
				30V DC	4A	2A			

Note: Measured at operating frequency of 120 operations per minute. Failure rate level P.

Approved Ratings

Voltage	UL Resistive				CSA								VDE			
					Resistive				Inductive				Resistive		$\begin{gathered} \text { AC-15, DC-13 } \\ \text { (Note) } \end{gathered}$	
	RJ1		RJ2		RJ1		RJ2		RJ1		RJ2		RJ1	RJ2	RJ1	RJ2
	NO	NC	N0	NC	NO	NC	NO	NC	N0	NC	NO	NC	NO	N0	NO	NO
250 V AC	12A	12A	8A	8A	12A	12A	8A	8A	7.5A	7.5A	4A	4A	12A	8A	6A	3A
30V DC	12A	6A	8A	4A	12A	6A	8A	4A	6A	3A	4A	2A	12A	8A	2.5A	2A

[^0]
RJ Series Slim Power Relays

Coil Ratings

Rated Voltage		Coil Voltage Code	Without LED Indicator			With LED Indicator			Operating Characteristics (against rated values at $20^{\circ} \mathrm{C}$)			Power Consumption	
		$\begin{gathered} \text { Rated } \\ \text { Current (mA) } \\ \left. \pm 15 \% \text { (at } 20^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \text { Coil } \\ \text { Resistance (} \Omega \text {) } \\ \left. \pm 10 \% \text { (at } 20^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \text { Rated } \\ \text { current (mA) } \\ \left. \pm 15 \% \text { (at } 20^{\circ} \mathrm{C}\right) \end{gathered}$		$\begin{aligned} & \text { Coil } \\ & \text { Resistance (}(\Omega) \\ & \left. \pm 10 \% \text { (at } 20^{\circ} \mathrm{C}\right) \end{aligned}$	Minimum Pickup Voltage	Dropout Voltage	Maximum Allowable Voltage (Note)				
		50 Hz		60 Hz	50 Hz					60 Hz			
$\begin{gathered} \text { AC } \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	12 V AC		A12	87.3	75.0	62.5	91.1	78.8	62.5	$\begin{gathered} 80 \% \\ \text { maximum } \end{gathered}$	$\begin{array}{\|c\|} \hline 30 \% \\ \text { minimum } \end{array}$	140\%	Approx. 0.9 VA (60Hz)
	24 VAC		A24	43.9	37.5	243	47.5	41.1	243				
	110VAC	A110	9.6	8.2	5270	9.5	8.1	5270					
	115VAC	A115	9.1	7.8	6030	9.0	7.7	6030					
	120 VAC	A120	8.8	7.5	6400	8.7	7.4	6400					
	220 VAC	A220	4.8	4.1	21530	4.8	4.1	21530					
	230 V AC	A230	4.6	3.9	24100	4.6	3.9	24100					
	240 V AC	A240	4.3	3.7	25570	4.3	3.7	25570					
DC	5 V	D5	106		47.2			47.2	$\begin{gathered} 70 \% \\ \text { maximum } \end{gathered}$	$\begin{gathered} 10 \% \\ \text { minimum } \end{gathered}$	170\%	Approx. 0.53W	
	6 V	D6	88.3		67.9	92.2		67.9					
	12 V	D12	44.2		271	48.0		271					
	24 V	D24	22.1		1080	25.7		1080					
	48 V	D48	11.0		4340	10.7		4340					
	100-110V	D100	5.3-5.8		18870	5.2-5.7		18870			160\%		

Note: Maximum allowable voltage is the maximum voltage that can be applied to relay coils and not the continuous allowable voltage.

Specifications

LED Illumination	Model		RJ1S	RJ2S
Controllers	Number of Poles		1-pole	2-pole
	Contact Configuration		SPDT	DPDT
Operator Interfaces	Contact Material		Silver-nickel alloy	
Sensors	Degree of Protection		IP40	
	Contact Resistance (initial value) (*1)		$50 \mathrm{~m} \Omega$ maximum	
AUTO-ID	Operate Time (*2)		15 ms maximum	
	Release Time (*2)		10 ms maximum (with diode/with RC: 20 ms maximum)	
	Dielectric Strength	Between contact and coil	5000 V AC, 1 minute	5000 V AC, 1 minute
		Between contacts of the same pole	1000 V AC, 1 minute	1000 V AC, 1 minute
Relays		Between contacts of different poles	-	3000 V AC, 1 minute
Sockets	Vibration Resistance	Operating extremes	10 to 55 Hz , amplitude 0.75 mm	
		Damage limits	10 to 55 Hz , amplitude 0.75 mm	
DIN Rail Products	Shock Resistance	Operating extremes	N0 contact: $200 \mathrm{~m} / \mathrm{s} 2$, NC contact: $100 \mathrm{~m} / \mathrm{s} 2$	
		Damage limits	$1000 \mathrm{~m} / \mathrm{s}^{2}$	
	Electrical Life (rated load)		AC load: $\quad 200,000$ operations minimum (operation frequency 1800 operations per hour)DC load:100,000 operations minimum (operation frequency 1800 operations per hour)	
RJ	Mechanical Life (no load)		$\begin{array}{ll}\text { AC coil: } & 30,000,000 \text { operations minimum (operation frequency } 18,000 \text { operations per hour) } \\ \text { DC coil: } & 50,000,000 \text { operations minimum (operation frequency } 18,000 \text { operations per hour) }\end{array}$	
RU	Operating Temperature (*3)		-40 to $+70^{\circ} \mathrm{C}$ (no freezing)	
RV8H	Operating Humidity		5 to 85\% RH (no condensation)	
	Weight (approx.)		19 g	

RL Note: Above values are initial values.
*1) Measured using 5V DC, 1A voltage drop method.
*2) Measured at the rated voltage (at $20^{\circ} \mathrm{C}$), excluding contact bounce time.
*3) 100% rated voltage.

Applicable Socket

Terminal	Part No.		Page
	RJ1S (1-pole)	RJ2S (2-pole)	
Standard Screw Terminal	SJ1S-05B	SJ2S-05B	H-043
Finger-safe Screw Terminal	SJ1S-07L	SJ2S-07L	
Push-in Terminal	SJ1S-21L	SJ2S-21L	

Relay Coil Tape Color

Coil Voltage	Coil Color
12 V AC	Yellow
24 V AC	White
110 V AC	Clear
115 V	Yellow
120 V AC	Blue
220 V AC	Black
230 V AC	Yellow
240 V AC	Red
5 V DC	Yellow
6 V DC	Yellow
12 V DC	Yellow
24 V DC	Green
48 V DC	Yellow
$100-110 \mathrm{~V}$ DC	Yellow

Dimensions

RJ1S

RJ2S-CL

All dimensions in mm.
RJ1S-CL- \square Standard (w/LED Indicator)

Coil voltage $24 \mathrm{~V} \mathrm{AC/DC}$ and below
RJ1S-C- \square Simple

RJ1S-CLD- \square With Diode (w/LED Indicator)

RJ1S-CD- \square With Diode

RJ1S-CLD1- \square With Diode (w/LED Indicator)

RJ1S-CD1- \square With Diode

RJ1S-CLR- \square With RC (w/LED Indicator)

RJ1S-CR- \square With RC

Electrical Life Curve

RJ1

Maximum Switching Capacity

RJ1

RJ2

RJ2

Operating Temperature and Coil Temperature Rise
RJ1

Sockets
DIN Rail Products

The above temperature rise curves show characteristics when 100% the rated coil voltage is applied.
The slanted dashed line indicates allowable temperature rise for the coil at different ambient temperatures.

\triangle Safety Precautions

Turn off the power to the relay before starting installation, removal, wiring, maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.
Observe specifications and rated values, otherwise electrical shock or fire hazard may be caused.
Use wires of the proper size to meet the voltage and current
requirements. Tighten the terminal screws on the relay socket to the proper tightening torque.
5. Surge suppression for transistor driving circuits:

When the relay coil is turned off, a high-voltage pulse is generated, causing the transistor to deteriorate and sometimes to break. Be sure to connect a diode to suppress the counter electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

Terminal Blocks

RJ Series Slim Power Relays

Instructions

Protection for Relay Contacts

1. The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.
2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in an increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using the actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:
This protection circuit can be used when
the load impedance is smaller than the RC
impedance in an AC load power circuit.
R: Resistor of approximately the same
resistance value as the load
C: 0.1 to $1 \mu \mathrm{~F}$
3. Do not use a contact protection circuit as shown below:
This protection circuit is very effective in arc suppression
when opening the contacts. But, the capacitor is charged
while the contacts are opened. When the contacts are closed,
the capacitor is discharged through the contacts, increasing
the possibility of contact welding.

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor, however, will improve the switching characteristics of a DC inductive load.

Other Precautions

1. General notice:

- To maintain the initial characteristics, do not drop the relay or shock the relay.
- The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.
- Use the relay in environments free from condensation of dust, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$.
- Make sure that the coil voltage does not exceed the applicable coil voltage range.

2. Connecting outputs to electronic circuits:

When the output is connected to a load which responds very quickly, such as an electronic circuit, contact bouncing causes incorrect operation of the load. Take the following measures into consideration.
a) Connect an integral circuit.
b) Suppress the pulse voltage due to bouncing within the noise margin of the load.
3. UL- and CSA-approved ratings may differ from product rated values determined by IDEC.
4. Do not use relays in the vicinity of strong magnetic field as this may affect relay operation

- DC diode type has polarity.
- The surge absorbing element on AC relays with RC or DC relays with diode is provided to absorb the counter electromotive force generated by the coil. When the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the relay to prevent damage.

Thank you for using IDEC Products.
By purchasing products listed in our catalogs, datasheets, and the like (hereinafter referred to as "Catalogs") you agree to be bound by these terms and conditions. Please read and agree to the terms and conditions before placing your order.

1. Notes on contents of Catalogs

(1) Rated values, performance values, and specification values of IDEC products listed in this Catalog are values acquired under respective conditions in independent testing, and do not guarantee values gained in combined conditions.
Also, durability varies depending on the usage environment and usage conditions.
(2) Reference data and reference values listed in Catalogs are for reference purposes only, and do not guarantee that the product will always operate appropriately in that range.
(3) The specifications / appearance and accessories of IDEC products listed in Catalogs are subject to change or termination of sales without notice, for improvement or other reasons.
(4) The content of Catalogs is subject to change without notice.

2. Note on applications

(1) If using IDEC products in combination with other products, confirm the applicable laws / regulations and standards.
Also, confirm that IDEC products are compatible with your systems, machines, devices, and the like by using under the actual conditions. IDEC shall bear no liability whatsoever regarding the compatibility with IDEC products.
(2) The usage examples and application examples listed in Catalogs are for reference purposes only. Therefore, when introducing a product, confirm the performance and safety of the instruments, devices, and the like before use. Furthermore, regarding these examples, IDEC does not grant license to use IDEC products to you, and IDEC offers no warranties regarding the ownership of intellectual property rights or non-infringement upon the intellectual property rights of third parties.
(3) When using IDEC products, be cautious when implementing the following. i. Use of IDEC products with sufficient allowance for rating and performance
ii. Safety design, including redundant design and malfunction prevention design that prevents other danger and damage even in the event that an IDEC product fails
iii. Wiring and installation that ensures the IDEC product used in your system, machine, device, or the like can perform and function according to its specifications
(4) Continuing to use an IDEC product even after the performance has deteriorated can result in abnormal heat, smoke, fires, and the like due to insulation deterioration or the like. Perform periodic maintenance for IDEC products and the systems, machines, devices, and the like in which they are used.
(5) IDEC products are developed and manufactured as general-purpose products for general industrial products. They are not intended for use in the following applications, and in the event that you use an IDEC product for these applications, unless otherwise agreed upon between you and IDEC, IDEC shall provide no guarantees whatsoever regarding IDEC products.
i. Use in applications that require a high degree of safety, including nuclear power control equipment, transportation equipment (railroads / airplanes / ships / vehicles / vehicle instruments, etc.), equipment for use in outer space, elevating equipment, medical instruments, safety devices, or any other equipment, instruments, or the like that could endanger life or human health
ii. Use in applications that require a high degree of reliability, such as provision systems for gas / waterworks / electricity, etc., systems that operate continuously for 24 hours, and settlement systems
iii. Use in applications where the product may be handled or used deviating from the specifications or conditions / environment listed in the Catalogs, such as equipment used outdoors or applications in environments subject to chemical pollution or electromagnetic interference If you would like to use IDEC products in the above applications, be sure to consult with an IDEC sales representative.

3. Inspections

We ask that you implement inspections for IDEC products you purchase without delay, as well as thoroughly keep in mind management/maintenance regarding handling of the product before and during the inspection.

4. Warranty

(1) Warranty period

The warranty period for IDEC products shall be one (1) year after purchase or delivery to the specified location. However, this shall not apply in cases where there is a different specification in the Catalogs or there is another agreement in place between you and IDEC.
(2) Warranty scope

Should a failure occur in an IDEC product during the above warranty period for reasons attributable to IDEC, then IDEC shall replace or repair that product, free of charge, at the purchase location / delivery location of the product, or an IDEC service base. However, failures caused by the following reasons shall be deemed outside the scope of this warranty.
i. The product was handled or used deviating from the conditions / environment listed in the Catalogs
ii. The failure was caused by reasons other than an IDEC product
iii. Modification or repair was performed by a party other than IDEC
iv. The failure was caused by a software program of a party other than IDEC
v. The product was used outside of its original purpose
vi. Replacement of maintenance parts, installation of accessories, or the like was not performed properly in accordance with the user's manual and Catalogs
vii. The failure could not have been predicted with the scientific and technical standards at the time when the product was shipped from IDEC
viii. The failure was due to other causes not attributable to IDEC (including cases of force majeure such as natural disasters and other disasters)
Furthermore, the warranty described here refers to a warranty on the IDEC product as a unit, and damages induced by the failure of an IDEC product are excluded from this warranty.

5. Limitation of liability

The warranty listed in this Agreement is the full and complete warranty for IDEC products, and IDEC shall bear no liability whatsoever regarding special damages, indirect damages, incidental damages, or passive damages that occurred due to an IDEC product.

6. Service scope

The prices of IDEC products do not include the cost of services, such as dispatching technicians. Therefore, separate fees are required in the following cases.
(1) Instructions for installation / adjustment and accompaniment at test operation (including creating application software and testing operation, etc.)
(2) Maintenance inspections, adjustments, and repairs
(3) Technical instructions and technical training
(4) Product tests or inspections specified by you

The above content assumes transactions and usage within your region. Please consult with an IDEC sales representative regarding transactions and usage outside of your region. Also, IDEC provides no guarantees whatsoever regarding IDEC products sold outside your region.

USA	IDEC Corporation	Singapore	IDEC Izumi Asia Pte. Ltd.	China	IDEC (Shanghai) Corporation	Japan	IDEC Corporation
EMEA	APEM SAS	Thailand	IDEC Asia (Thailand) Co., Ltd.		IDEC Izumi (H.K.) Co., Ltd.		
		India	IDEC Controls India Private Ltd.	Taiwan	IDEC Taiwan Corporation		

[^0]: Note: According to the utilization categories of IEC60947-5-1

