HS1C Interlock Switches with Solenoid

The guard door remains locked until the machine stops completely.

- With the actuator mounted on the guard door and the interlock switch on the machine, the door is mechanically locked when closed.
- The door is unlocked by a solenoid lock-release signal from a PLC or another source after the machine has stopped, ensuring higher safety.
- In the event of power failure or for machine maintenance, the door can be unlocked using a special tool.
- Flexible installation: The actuator can be inserted into two directions.
- Select from four different circuit configurations.
- IP67 rated rugged die-cast aluminum housing.

Parts and Functions

Interlock Switch

Contact Configuration	Solenoid Unit Location	Part No.
Main Circuit: 1NC+1NC Auxiliary Circuit: 1NO/1NO		

- The contact configurations show the contact status when the actuator is inserted and locked
- The HS9Z-T1 special key wrench for removing the cover and manual unlocking is supplied with the interlock switch.
- Specify an indicator color in place of (2) in the Part No. G: green, R: red
- The solenoid unit installed on the left can be made upon request
- Actuators are not supplied with the interlock switch, and must be ordered separately.
Actuators/Key Wrench/Screwdriver for TORX Screws

Description	Part No.
Straight Actuator	HS9Z-A1
Right-angle Actuator	HS9Z-A2
Angle Adjustable Actuator (mainly for hinged doors)	HS9Z-A3
Special Key Wrench for TORX	HS9Z-T1

Part No. Development

Contact Ratings

Rated Insulation Voltage (Ui)				300V (between LED or solenoid and ground: 60V)		
Rated Thermal Current (Ith)				Main circuit: 10A Auxiliary circuit: 3 A		
Rated Voltage (Ue)				30 V	125 V	250 V
Rated Current (le) (Note)	Main Circuit	AC	Resistive load (AC-12)	10A	10A	6A
			Inductive Load (AC-15)	10A	5A	3A
		DC	Resistive load (DC-12)	6A	-	-
			Inductive Load (DC-13)	3A	0.9A	-
	Auxiliary Circuit	AC	Resistive load (AC-12)	-	3A	3A
			Inductive Load (AC-15)	-	-	3A
		DC	Resistive load (DC-12)	3A	-	-
			Inductive Load (DC-13)	-	0.9A	-

- Minimum applicable load (reference value): 3 V AC/DC, 5 mA Note: Ratings approved by safety agencies: A300: AC-15 3A/250V

Solenoid Unit

Rated Voltage	24 V DC $(100 \%$ duty cycle)
Rated Current	415 mA
Coil Resistance	$58 \Omega\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$
Pickup Voltage	Rated voltage $\times 85 \%$ maximum (at $\left.20^{\circ} \mathrm{C}\right)$
Dropout Voltage	Rated voltage $\times 10 \%$ minimum $\left(\right.$ at $\left.20^{\circ} \mathrm{C}\right)$
Maximum Continuous Applicable Voltage	Rated voltage $\times 110 \%$
Maximum Continuous Applicable Time	Continuous
Insulation Class	Class B

Indicator

Rated Voltage	24 V DC
Rated Current	10 mA
Light Source	LED
Light Color	G (green), R (red)

- The lens cannot be replaced.

Specifications

Applicable Standards	ISO14119, IEC60947-5-1 EN60947-5-1 (TÜV approved) GS-ET-19 (TÜV approved) UL508 (UL listed) CSA C22.2 No. 14 (c-UL listed) GB/T14048.5 (CCC approved)
	IEC 60204-1/EN 60204-1 (applicable standards for use)
Operating Temperature	-20 to $50^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity	45 to 85\% (no condensation)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	3
Impulse Withstand Voltage	4 kV (between LED, solenoid and ground: 2.5 kV)
Insulation Resistance (500V DC megger)	Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum Between live metal part and ground: $100 \mathrm{M} \Omega$ minimum Between live metal parts: $100 \mathrm{M} \Omega$ minimum Between terminals of the same pole: $100 \mathrm{M} \Omega$ minimum
Electric Shock Protection	Class I (IEC 61140)
Degree of Protection	IP67 (IEC 60529)
Shock Resistance	Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$
Vibration Resistance	Operating extremes: 10 to 55 Hz , amplitude 0.5 mm minimum Damage limits: 30 Hz , amplitude 1.5 mm minimum
Actuator Operating Speed	0.05 to $1.0 \mathrm{~m} / \mathrm{s}$
Direct Opening Travel	11 mm minimum
Direct Opening Force	20N minimum
Actuator Retention Force	1500N minimum (GS-ET-19)
Operating Frequency	900 operations per hour
Mechanical Life	1,000,000 operations minimum (GS-ET-19)
Electrical Life	100,000 operations minimum (operating frequency 900 operations per hour, load AC-12, 250V, 6A) 1,000,000 operations minimum (operating frequency 900 operations per hour, load 24V AC/DC, 100mA)
Conditional Short-circuit Current	100A (250V) (Use 250V/10A fast-blow fuse for short-circuit protection.)
Weight (approx.)	660 g

HS1C Interlock Switches with Solenoid

Dimensions

HS1C-R44-R when using the Straight Actuator (HS9Z-A1)

Note: Plug the unused actuator entry slot using the slot plug supplied with the interlock switch.

- Use four mounting screws to mount the interlock switch according to the mounting hole layout

* Actuator center position

HS1C-R44-R when using the Right-angle Actuator (HS9Z-A2)
(Vertical Mounting)
RP: Actuator Mounting Reference Position

Note: Plug the unused actuator entry slot using the slot plug supplied with the interlock switch.

- Use four mounting screws to mount the interlock switch according to the mounting hole layout.

Actuator Dimensions

Straight Actuator HS9Z-A1

Note: The actuator cover and actuator stop films are supplied with the actuator and used when adjusting the actuator position. Remove the actuator cover and actuator stop film after the actuator position is determined.

Circuit Diagrams and Operating Characteristics
HS1C- 4 4DRR-* (Main Circuit: 1NC+1NC, Monitor Circuit: 1NO/1NO)

	Status 1	Status 2	Status 3	Status 4
Interlock Switch Status	- Door closed - Machine ready to operate - Solenoid de-energized	- Door closed - Machine cannot be started - Solenoid energized	- Door open - Machine cannot be started - Solenoid energized	- Door open - Machine cannot be started - Solenoid de-energized
Door				
Circuit Diagram	Contacts are linked to the solenoid mechanically.			
Main Circuit	3-4: Closed	3-4: Open	3-4: Open	3-4: Open
Monitor Circuit	1-2: Open	1-2: Closed	1-2: Closed	1-2: Closed
Solenoid Power	5-6: Power OFF	5-6: Power ON	5-6: Power ON	5-6: Power OFF

HS1C-D14DDR-* (Main Circuit: 1NC+1NC, 1NC+1NC, Monitor Circuit: 1NO)

	Status 1	Status 2	Status 3	Status 4
Interlock Switch Status	- Door closed - Machine ready to operate - Solenoid de-energized	- Door closed - Machine cannot be started - Solenoid energized	- Door open - Machine cannot be started - Solenoid energized	- Door open - Machine cannot be started - Solenoid de-energized
Door				
Circuit Diagram	Contacts are linked to the solenoid mechanically.			
Main Circuit	3-4: Closed	3-4: Open	3-4: Open	3-4: Open
Monitor Circuit	1-2: Open	1-2: Open	1-2: Closed	1-2: Closed
Solenoid Power	5-6: Power OFF	5-6: Power ON	5-6: Power ON	5-6: Power OFF

- Main circuit: Connected to the machine drive control circuit, sending interlock signals to the protective door.
- Monitor circuit:Sends ON/OFF signals of the main circuit and monitoring signals of open/closed status of the protective door.

HS1C- $\square 24 \square \square R-*$ (Main Circuit: 1NC+1NC, Monitor Circuit: 1NC/1NC)

	Status 1	Status 2	Status 3	Status 4
Interlock Switch Status	- Door closed - Machine ready to operate - Solenoid de-energized	- Door closed - Machine cannot be started - Solenoid energized	- Door open - Machine cannot be started - Solenoid energized	- Door open - Machine cannot be started - Solenoid de-energized
Door				
Circuit Diagram	Contacts are linked to the solenoid mechanically.			
Main Circuit	3-4: Closed	3-4: Open	3-4: Open	3-4: Open
Monitor Circuit	1-2: Closed	1-2: Open	1-2: Open	1-2: Open
Solenoid Power	5-6: Power OFF	5-6: Power ON	5-6: Power ON	5-6: Power OFF

HS1C- $\square 34 \square \square R-*$ (Main Circuit: 1NC+1NC, Monitor Circuit: 1NC)

	Status 1	Status 2	Status 3	Status 4
Interlock Switch Status	- Door closed - Machine ready to operate - Solenoid de-energized	- Door closed - Machine cannot be started - Solenoid energized	- Door open - Machine cannot be started - Solenoid energized	- Door open - Machine cannot be started - Solenoid de-energized
Door				
Circuit Diagram	Contacts are linked to the solenoid mechanically.			
Main Circuit	3-4: Closed	3-4: Open	3-4: Open	3-4: Open
Monitor Circuit	1-2: Closed	1-2: Closed	1-2: Open	1-2: Open
Solenoid Power	5-6: Power OFF	5-6: Power ON	5-6: Power ON	5-6: Power OFF

- Main circuit: Connected to the machine drive control circuit, sending interlock signals to the protective door.
- Monitor circuit:Sends ON/OFF signals of the main circuit and monitoring signals of open/closed status of the protective door.

Safety Precautions

- In order to avoid electric shock or fire, turn power off before installation, removal, wire connection, maintenance, or inspection of the interlock switch.
- If relays are used in the circuit between the interlock switch and the load, consider the danger and use safety relays, since welded or sticking contacts of standard relays may invalidate the functions of the interlock switch. Perform risk assessment and establish a safety circuit which satisfies the requirement of the safety category.
- Do not place a PLC in the circuit between the interlock switch and the load. Safety security can be endangered in the event of a malfunction of the PLC.
- Do not disassemble or modify the interlock switch, otherwise a malfunction or an accident may occur.
- Do not install the actuator in the location where the human body may come into contact. Otherwise injury may occur.

Instructions

- Regardless of door types, do not use the interlock switch as a door stop. Install a mechanical door stop at the end of the door to protect the interlock switch against excessive force.
- Do not apply excessive shock to the interlock switch when opening or closing the door. A shock to the interlock switch exceeding $1,000 \mathrm{~m} / \mathrm{s}^{2}$ may cause damage to the interlock switch.
- When wiring, unscrew the cover with part number label only. Unnecessary loosening of other screws may cause a malfunction of the interlock switch.
- Prevent foreign objects such as dust and liquids from entering the interlock switch while connecting a conduit or wiring.
- If the operating atmosphere is contaminated, use a protective cover to prevent the entry of foreign objects into the interlock switch through the actuator entry slots.
- Entry of a considerable amount of foreign objects into the interlock switch may affect the mechanism of the interlock switch and cause a breakdown.
- Plug the unused actuator entry slot using the slot plug supplied with the interlock switch.
- Do not store the interlock switches in a dusty, humid, or organic-gas atmosphere, or in an area subjected to direct sunlight.
- Use dedicated actuators only. When other actuators are used, the interlock switch may be damaged.
- Do not modify the actuator, otherwise it will damage the interlock switch.
- The cover uses special screws which cannot be removed or tightened by general drivers. Use the special wrench supplied with the interlock switch (HS1B).
- Regardless of door types, do not use the interlock switch as a door lock. Install a separate lock using a latch or other measures.
- The solenoid has polarity. Make sure of the correct polarity when wiring. Do not apply overvoltage, otherwise the solenoid will be burnt.

Actuator Angle Adjustment

- Using the angle adjustment screw, the actuator angle can be adjusted (refer to the dimensional drawing). Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening.
- After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the actuator entry slot of the interlock switch.
- Recommended tightening torque of angle adjustment screw: $0.8 \mathrm{~N} \cdot \mathrm{~m}$
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not loosen.
- Actuator retention force is 1500 N (static load). Make sure larger force is not applied. When larger force is expected, add a system using interlock switch without lock (ex. HS1B) and sensor in order to detect door opening and to stop the machine.

Minimum Radius of Hinged Door

- When using the interlock switch on hinged doors, refer to the minimum radius of doors shown below. When using on doors with small minimum radius, use the angle adjustable actuators (HS9Z-A3).
Note: Because deviation or dislocation of hinged door may occur in actual applications, make sure of the correct operation before installation.

HS9Z-A2 Actuator

- When the door hinge is on the extension line of the interlock switch surface:

- When the door hinge is on the extension line of the actuator mounting surface:

HS9Z-A3 Actuator

- When the door hinge is on the extension line of the interlock switch surface:

- When the door hinge is on the extension line of the actuator mounting surface:

Instructions

Mounting Examples

Manual Unlocking

The HS1C allows manual unlocking of the actuator to precheck proper entry of the actuator into the slot as well as for emergency use such as a power failure.

- Remove the screw located on the side of the interlock switch using the special wrench supplied with the interlock switch. Insert a small screwdriver into the screw hole to push the lever inside of the interlock switch toward the indicator until the actuator is unlocked.
Note: Before manually unlocking the
 interlock switch, make sure that the machine has come to a complete stop. Manual unlocking during operation may unlock the interlock switch before the machine stops, and the function of interlock switch with solenoid is lost. After unlocking, ensure to install the screw.

Applicable Crimping Terminal

Terminal Nos. 7, 8
Ground Terminal: E

Terminal No. 1 to 6

- Direct wiring using either solid or stranded wires.
- When using stranded wires, make sure that loose wires do not cause short circuit. Also, do not solder the terminal to prevent loose wires.
When using Ferrules

Compatible	AWG	Part No.
$0.75 \mathrm{~mm}^{2}$	18	S3TL-H075-14WW
$1.0 \mathrm{~mm}^{2}$	17	S3TL-H10-14WY
$1.5 \mathrm{~mm}^{2}$	16	S3TL-H15-14WR

- Recommendation tools (sold separately)

Name	Part No.	Note
Crimping tool	S3TL-CR06D	Overseas limited sale

Applicable Wire Size

- Terminal Nos. 1, 2, 5, 6, 7, 8: 0.5 to $0.75 \mathrm{~mm}^{2}$
- Terminal Nos. 3, 4, E: $\quad 1.0$ to $1.25 \mathrm{~mm}^{2}$

Applicable Cable Glands

- Use IP67 cable gland.

Refer to the instruction sheet from the URL below for recommended cable glands.
https://apac.idec.com/idec-apac/en/SGD/c/HS1C_Series

Recommended Tightening Torque of Mounting Screws

- Interlock switch: 4.5 to $5.5 \mathrm{~N} \cdot \mathrm{~m}$ (four M5 screws)
- Terminal screws for terminal No. 1 to 6: 0.4 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ (M3)
- Terminal screws for terminal No. 7 and 8: 0.9 to $1.1 \mathrm{~N} \cdot \mathrm{~m}$ (M3.5)
- Actuator (HS9Z-A1/A2/A3): 4.5 to $5.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M6 screws)
- Mounting bolts must be provided by users.
- The above recommended tightening torques of the mounting screws are the values confirmed with hex socket head bolts. When other screws are used and tightened to a smaller torque, make sure that the screws do not come loose after mounting.
- To avoid unauthorized or unintended removal of the interlock switch and the actuator, it is recommended that the interlock switch and the actuator are installed in an unremovable manner, for example using special screws, rivets, or welding the screws.
- Use an insulation tube on the crimping terminal.

Instructions

Cable Lead-in Length and Wiring Examples

	Terminal No.	Conduit Port	
		(1)	(2)
	1	30 ± 2	45 ± 2
	2	30 ± 2	50 ± 2
	3	25 ± 2	55 ± 2
	4	25 ± 2	60 ± 2
	5	30 ± 2	65 ± 2
	6	30 ± 2	70 ± 2
	7	65 ± 2	35 ± 2
	8	65 ± 2	110 ± 2
	E	85 ± 2	45 ± 2
Wire Stripping Length L2 (mm)	7 ± 1		

Note: Wire the interlock switches according to the following examples.

When using Conduit Port (2)

When using Conduit Port ${ }^{(1)}$

Note: When wiring the ground (E) terminal, connect in the solid line direction only. Do not connect in the dotted line direction.

Thank you for using IDEC Products.
By purchasing products listed in our catalogs, datasheets, and the like (hereinafter referred to as "Catalogs") you agree to be bound by these terms and conditions. Please read and agree to the terms and conditions before placing your order.

1. Notes on contents of Catalogs

(1) Rated values, performance values, and specification values of IDEC products listed in this Catalog are values acquired under respective conditions in independent testing, and do not guarantee values gained in combined conditions.
Also, durability varies depending on the usage environment and usage conditions.
(2) Reference data and reference values listed in Catalogs are for reference purposes only, and do not guarantee that the product will always operate appropriately in that range.
(3) The specifications / appearance and accessories of IDEC products listed in Catalogs are subject to change or termination of sales without notice, for improvement or other reasons.
(4) The content of Catalogs is subject to change without notice.

2. Note on applications

(1) If using IDEC products in combination with other products, confirm the applicable laws / regulations and standards.
Also, confirm that IDEC products are compatible with your systems, machines, devices, and the like by using under the actual conditions. IDEC shall bear no liability whatsoever regarding the compatibility with IDEC products.
(2) The usage examples and application examples listed in Catalogs are for reference purposes only. Therefore, when introducing a product, confirm the performance and safety of the instruments, devices, and the like before use. Furthermore, regarding these examples, IDEC does not grant license to use IDEC products to you, and IDEC offers no warranties regarding the ownership of intellectual property rights or non-infringement upon the intellectual property rights of third parties.
(3) When using IDEC products, be cautious when implementing the following. i. Use of IDEC products with sufficient allowance for rating and performance
ii. Safety design, including redundant design and malfunction prevention design that prevents other danger and damage even in the event that an IDEC product fails
iii. Wiring and installation that ensures the IDEC product used in your system, machine, device, or the like can perform and function according to its specifications
(4) Continuing to use an IDEC product even after the performance has deteriorated can result in abnormal heat, smoke, fires, and the like due to insulation deterioration or the like. Perform periodic maintenance for IDEC products and the systems, machines, devices, and the like in which they are used.
(5) IDEC products are developed and manufactured as general-purpose products for general industrial products. They are not intended for use in the following applications, and in the event that you use an IDEC product for these applications, unless otherwise agreed upon between you and IDEC, IDEC shall provide no guarantees whatsoever regarding IDEC products.
i. Use in applications that require a high degree of safety, including nuclear power control equipment, transportation equipment (railroads / airplanes / ships / vehicles / vehicle instruments, etc.), equipment for use in outer space, elevating equipment, medical instruments, safety devices, or any other equipment, instruments, or the like that could endanger life or human health
ii. Use in applications that require a high degree of reliability, such as provision systems for gas / waterworks / electricity, etc., systems that operate continuously for 24 hours, and settlement systems
iii. Use in applications where the product may be handled or used deviating from the specifications or conditions / environment listed in the Catalogs, such as equipment used outdoors or applications in environments subject to chemical pollution or electromagnetic interference If you would like to use IDEC products in the above applications, be sure to consult with an IDEC sales representative.

3. Inspections

We ask that you implement inspections for IDEC products you purchase without delay, as well as thoroughly keep in mind management/maintenance regarding handling of the product before and during the inspection.

4. Warranty

(1) Warranty period

The warranty period for IDEC products shall be one (1) year after purchase or delivery to the specified location. However, this shall not apply in cases where there is a different specification in the Catalogs or there is another agreement in place between you and IDEC.
(2) Warranty scope

Should a failure occur in an IDEC product during the above warranty period for reasons attributable to IDEC, then IDEC shall replace or repair that product, free of charge, at the purchase location / delivery location of the product, or an IDEC service base. However, failures caused by the following reasons shall be deemed outside the scope of this warranty.
i. The product was handled or used deviating from the conditions / environment listed in the Catalogs
ii. The failure was caused by reasons other than an IDEC product
iii. Modification or repair was performed by a party other than IDEC
iv. The failure was caused by a software program of a party other than IDEC
v. The product was used outside of its original purpose
vi. Replacement of maintenance parts, installation of accessories, or the like was not performed properly in accordance with the user's manual and Catalogs
vii. The failure could not have been predicted with the scientific and technical standards at the time when the product was shipped from IDEC
viii. The failure was due to other causes not attributable to IDEC (including cases of force majeure such as natural disasters and other disasters)
Furthermore, the warranty described here refers to a warranty on the IDEC product as a unit, and damages induced by the failure of an IDEC product are excluded from this warranty.

5. Limitation of liability

The warranty listed in this Agreement is the full and complete warranty for IDEC products, and IDEC shall bear no liability whatsoever regarding special damages, indirect damages, incidental damages, or passive damages that occurred due to an IDEC product.

6. Service scope

The prices of IDEC products do not include the cost of services, such as dispatching technicians. Therefore, separate fees are required in the following cases.
(1) Instructions for installation / adjustment and accompaniment at test operation (including creating application software and testing operation, etc.)
(2) Maintenance inspections, adjustments, and repairs
(3) Technical instructions and technical training
(4) Product tests or inspections specified by you

The above content assumes transactions and usage within your region. Please consult with an IDEC sales representative regarding transactions and usage outside of your region. Also, IDEC provides no guarantees whatsoever regarding IDEC products sold outside your region.

USA	IDEC Corporation	Singapore	IDEC Izumi Asia Pte. Ltd.	China	IDEC (Shanghai) Corporation	Japan	IDEC Corporation
EMEA	APEM SAS	Thailand	IDEC Asia (Thailand) Co., Ltd.		IDEC Izumi (H.K.) Co., Ltd.		
		India	IDEC Controls India Private Ltd.	Taiwan	IDEC Taiwan Corporation		

